

RX-003-1016031 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

March - 2019

Physics: Paper - 601

(Nuclear and Particle Physics) (New Course)

Faculty Code: 003

Subject Code: 1016031

Time: 2	Hours] [Total Marks : 70
Instruct	ons: (1) All questions are compulsory. (2) Symbols have their usual meaning. (3) Figures on right hand sides indicates full marks
1 (A)	Fill up the blank: (1) Protons and neutrons are jointly called (2) \[\frac{nuclear mass}{nuclear volume} = (3) The nuclei, having even number of protons and even number of neutrons are called nuclei. (4) In semi empirical mass formula, the surface term,
(B)	Es = Solve any one: (1) Calculate the binding energy of 32Br ⁸⁰ . Atomic masses of Br ⁸⁰ , proton and neutron are 79.91 amu, 1.007825 amu and 1.008665 amu respectively. (2) What is the binding energy per nucleon of 28Ni ⁶⁴ Mass of proton = 1.007275 amu, mass of neutron = 1.008665 amu. and mass of 28Ni ⁶⁴ nucleus = 62.8186 amu.
(C)	 63.8126 amu. Answer any one: (1) Determine the binding energy of 26 Fe⁵⁶ using semi-empirical mass formula. The constants of the formula are a = 15.7, b = 17.8, c = 0.711, d = 23.7 and δ = 11.18. (2) Discuss binding energy.

	(D)	 Answer any one: (1) Describe Rutherford's α – scattering experiment. (2) Describe classification of nuclei. 	5
2	(A)	Fill up the blank: (1) The ionization power of α particle is times greater than β rays.	4
		(2) The particles are identical with electrons.	
		(3) The unit of radioactivity is	
		$(4) zX^A \rightarrow_{z-1} Y^A + \underline{\qquad}.$	
	(B)	Solve any one:	2
		(1) A radioactive substance has a half-life period is 30 days. Calculate the radioactive disintegration	
		constant. (2) The radioactive substance has decay constant 0.0231 per day. Calculate the time taken for	
		$\frac{1}{8}$ of the original number of atoms to remain	
	(C)	unchanged. Answer any one :	3
	(0)	(1) A radioactive substance initially contains 5 mg of	9
		U^{234} . How much parent substance will remain	
		after 4.96×10^4 year? Half-life period is 2.48×10^4	
		years. (2) Explain the radioactive thorium series.	
	(D)	Answer any one:	5
	` ′	(1) Explain half-life and mean life.	
		(2) Describe the theory of α -decay.	
3	(A)	Fill up the blank:	4
		(1) In pair production disappear and	
		electron hole pair produced. (2) The C.M. Counter must be utilized in the	
		(2) The G M Counter must be utilized in the region.	
		(3) The reaction $_{14}Si^{28} +_2 He^4 \rightarrow_{15} P^{31} +_1 H^1$ is	
		known as reaction.	
		(4) (n, α) reaction is belong to the class transmutation by	
	(B)	Solve any one:	2
		(1) Write in expanded form : $F^{19}(p, \alpha)O^{16}$.	
		(2) Write in abbreviated form:	
		$_{5}B^{11} +_{1}H^{1} \rightarrow_{4} Be^{8} +_{2} He^{4}$.	

- 3 (C) Answer any **one**: (1) Find the threshold energy for the reaction; $_{7}N^{14}(n,\alpha)_{5}B^{11}$ Q = -0.15646 MeV. Masses of N^{14} , B^{11} , n^1 and α are 14.003074 amu, 11.009305 amu, 1.008665 amu and 4.002603 amu respectively. Explain working of solid state detector. (D) Answer any one: 5 Describe the interaction between energetic particle and matter. Obtain Q-value equation for a nuclear reaction. (2) Fill up the blank: 4 4 (A) The length of n^{th} cylinder of a linear accelerator in terms of that of first cylinder is given by the formula; $L_n = \underline{\hspace{1cm}}$. An accelerator consists of one DEE is the modified form of Uncontrolled chain reaction is take place The chain reaction is super critical then k (B) Solve any one: 2 Fill up the blanks in the following breeding reactions: $_{90}Th^{232} +_{0} n^{1} \rightarrow_{90} Th^{233} +$ $_{90}Th^{233} \rightarrow_{91} Pa^{233} +$ (iii) $_{91}Pa^{233} \rightarrow_{92} U^{233} + ____+$ Calculate the frequency of oscillating potential (2) that must be applied to a cyclotron in which deuterons are accelerated in a constant field of intensity 25000 gauss. Mass of deuteron is 3.34×10^{-27} kg and $q = 1.6 \times 10^{-19} C$. 3 (C) Answer any one: Calculate the amount of energy released in the
 - (1) Calculate the amount of energy released in the process of fission by 1 mg of $_{92}U^{239}$ assuming that 200 MeV of energy is released per fission, Avogadro's number = 6.025×10^{26} .

		electron synchrotron and proton synchrotron.	
	(D)	Answer any one:	5
		(1) Describe construction and working of linear accelerator.	
		(2) Describe main components of nuclear reactor.	
5	(A)	Fill up the blank:	4
		(1) The sun radiates joule energy per second.	
		(2) Nuclear fusion as an energy source will be a boon to humanity because is available everywhere on this planet.	
		(3) Positron is anti-particle of	
		(4) Lambda, sigma, xi and omega particles are known	
	(B)	Solve any one :	2
	(13)	(1) What is the net result of the following reactions;	_
		$_{1}H^{1} +_{1}H^{1} \rightarrow_{1}H^{2} +_{1}e^{0} + \gamma + 0.42 MeV$	
		$_{1}H^{2} +_{1}H^{1} \rightarrow_{2} He^{3} + \gamma + 5.5 MeV$	
		$_{2}He^{3} +_{2}He^{3} \rightarrow_{2}He^{4} + 2_{1}H^{1} + 12.8 MeV$	
		(2) Calculate the energy liberated when a single helium nucleus is formed by the fusion of two	
		deuterium nuclei. Given: mass of $_1H^2 = 2.07478$	
		amu, mass of $_2He^4 = 4.00388$ amu.	
	(C)	Answer any one:	3
		(1) Calculate the mass of the $_2He^3$ in the following	
		fusion reaction:	
		$_{1}H^{2} +_{1}H^{2} \rightarrow_{2} He^{3} +_{0} n^{1} + 3.26 MeV$	
		Given: mass of $_1H^2 = 2.01471$ amu, mass of	
		$_0n^1 = 1.00898$ amu.	
		(2) Discuss tokamak for plasma confinement.	
	(D)	Answer any one:	5
		(1) Describe source of stellar energy.	
		(2) Give the classification of elementary particles.	

(2) Draw the schematic diagrams of synchrocyclotron,